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ABSTRACT

The recent appearance of nonlocal methods is examined in the light of traditional
continuum mechanics. A comparison of nonlocal approaches in the fields of solid
and fluid mechanics reveals that no consistent definition of a nonlocal theory has
been used. We suggest a definition based on the violation of the principle of
local action in continuum mechanics. From the consideration of the implications
of a nonlocal theory based on this definition, we conclude that constitutive
relations with nonlocal terms can confuse the traditional separation of the roles
between conservation laws and constitutive relations and bring into question the
identification of constants in the constitutive equation as material parameters.
The diversity of motivations for the nonlocal approaches are presented, resulting
primarily from deficiencies in numerical solutions to practical problems. To
illustrate these concepts, the history of nonlocal terms in the field of viscoelastic
fluids is reviewed. A specific example of a viscoelastic constitutive relation that
contains a stress diffusion term is applied to a simple shear flow and found not
to be a physical description of any known fluid. We conclude by listing questions
that should be asked of nonlocal approaches. [Keywords: nonlocal, nonlinear
plasticity, viscoelasticity, constitutive relations, continuum mechanics.]

1. INTRODUCTION

There are repeated examples in the literature that the addition of nonlocal terms to constitutive
equations, or more subtly the implied nonlocal terms of some numerical schemes, have resulted in
an improved description of physical phenomena. Often these modifications to existing theories are
initially empirical, often numerical in nature. In time, as their utility is demonstrated, their use
is supported by theoretical considerations. But there has not been the discussion in the literature
about the appropriateness of nonlocal constitutive equations within the context of continuum
mechanics. Intense activity in the development of nonlocal theories occurs currently in the fields of
localized failure in solids and of spectral turbulence models, and to a lesser degree in viscoelastic



fluids. We first consider the meaning of a nonlocal approach within the perspective of traditional
continuum mechanics. We then review the motivations for including nonlocal terms, either in
constitutive equations or implied in the constitutive equation by the numerical schemes. Finally
the lessons learned from viscoelastic fluid modeling are presented, and a specific nonlocal viscoelastic
model is examined in detail.

Because viscoelastic fluids exhibit solid-like and fluid-like behavior depending on the time
scale of deformation, the governing equations exhibit behavior and numerical challenges that
are remarkably similar to those in solid mechanics. As more complex constitutive equations are
considered and computational resources increase, the ability to compute solutions to the governing
equations in the two fields has become more important. As we shall argue, the difficulties in
obtaining realistic numerical solutions have resulted in the introduction of nonlocal approaches
over the past 5 years in both fields. And theoretical justifications are being proposed for these
numerical necessities. We hope that the examination of the history of nonlocal approaches in
viscoelastic fluids will benefit the solid mechanics community.

We have chosen not to include nonlocal turbulence theories in this paper. These approaches
are largely motivated by theoretical necessity, not numerical necessity, and are not as appropriate
in the comparison to solid mechanics in the following discussions. Furthermore the continuum
mechanics concepts applied to nonlocal approaches in this paper, those of conservation equations
and constitutive relations, are not typically applied to turbulence theories. Instead, turbulent
theories strive to develop system of equations that are universal to Newtonian fluids and not to
develop constitutive relations for certain materials. We do note that the following discussions are
relevant if the turbulence conservation equation are taken as the ensembled-averaged conservation
equation of traditional continuum mechanics and the constitutive relations are given by the by the
auxiliary equations that relate the Reynolds stress to the mean-kinematic variables. An introduction
to and a comparison of nonlocal modeling in solid mechanics and turbulence should be consulted
for further reference (Chen and Clark, 1991).

2. THE PERSPECTIVE OF TRADITIONAL CONTINUUM MECHANICS

Before nonlocal approaches can be discussed, the relevant concepts used in continuum
mechanics are summarized as a reference point. All modeling of materials discussed in this paper
is based on a continuum representation of noncontinuous or discrete subunits, whether atoms that
make up a solid or polymer fluid, grains in a crystalline solid, or eddies in a turbulent fluid.
The continuum assumption reduces these phenomena to a spatially continuous description. The
continuum assumption is made out of necessity; the detailed treatment of these systems in their full
complexity for applications of practical interest is not possible. The closest that we may model these
systems at their fundamental complexity are by massive computer simulations, such as molecular
dynamics of solid and fluids or direct numerical simulation of turbulence.

The continuum assumption results in fundamental changes in the functional dependence of
the dependent state variables on the dynamics of a system and the parameters that are used to



describe a specific material. For example, in an actual system the stress at a point depends only
on the current state of the system in the vicinity of the point (here, and in the discussion that
follows, we use states to refer to both the kinematic variables and the dependence state variables).
There is no reference to previous states of the system, nor to a reference state. An illustration of
this ideas occurs in a molecular dynamics simulation of a solid undergoing elastic deformation. The
state of stress depends only on the current phase space and intermolecular forces. The parameters
that describe a specific material are the parameters in the atomic potentials. This description of
the material is essentially local, meaning the current state of the material is only affected by its
immediate neighbors. There are no physical mechanisms that produce action at a distance. It is
noted that the concept of a stress at a point in a discontinuous system of atoms is only meaningful
as an ensemble average over many possible phase-space configurations. The application of the
continuum assumption results in a simplified description of the system, but at the expense of a
loss of information at small length and time scales. The consequence of the loss of information
is that the state of stress at a material point in a continuum may now depend on the state at
distant material points and on the history of states of the system. Furthermore the parameters
that describe a specific material are typically continuum material properties, such as the elastic
modulus or fluid viscosity. Thus it is the application of the continuum assumption that introduces
the possibility of a nonlocal description from an essentially local description of a discrete system.

Traditional continuum mechanics for fluid and solid systems has been founded on the basic
premise that there are universal conservation laws that apply to all continuum materials. In
these integral or differential conservation laws appear state variables of the material, the stress,
for example. Theoretical investigations currently focus on development of constitutive relations
that specify dependence of the current state of material on the current or past kinematic or state
variables. (We note that constitutive relations have many alternative names, such as constitutive
equations or rheological equations of state.) The conservation laws are considered inviolate and
are not modified to accommodate changes in materials. In order to describe a different material
or physical process, material parameters in the constitutive equation are changed or an entirely
different constitutive equation is used. Because we are exclusively concerned with mechanical
theories, a constitutive equation will be taken to mean the auxiliary equation or equations that are
required for the solution of the conservation of momentum equation.

Constitutive equations have traditionally been required to satisfy the following principles that
restrict their form (summarized from Crochet et al., 1984; also see Bird et al., 1987a):

1. Principle of local action. In determining the stress at a given material point, the motion
or stress outside an arbitrary neighborhood of the material point is disregarded. There exists
no mechanism for action-at-a-distance.

2. Principle of two-frame invariance. The relationship between the stress tensor and the
history of motion of a body cannot depend on the particular coordinate system used to describe
the stress and the history of motion. Furthermore, constitutive equations must satisfy usual
tensorial invariance expected of a physical theory.



3. Principle of invariance under translation or superimposed rigid body motion.

Constitutive equations must have a significance which is independent of absolute motion in
space. The superposition of a rigid body motion on a given deformation history cannot have
any effect on the stress field other than that arising from the obvious physical effects brought
about by the superposed rotational motion.

We note that the principle of two-frame invariance is justified if a material does not have any
sub-continuum inertia. Observance of these principles leads to constitutive equations that describe
a simple material, or in the field of fluid rheology, a simple fluid. Oldroyd (1950) used the term
rheological invariance to describe these three principles.

The motivation for the second and third principles of invariance above are self-evident. The
principle of local action is motivated by the resulting simplicity in the constitutive equations and the
belief that the current state of stress at a material point should depend only on the history of states
of the material point. A further advantage of the assumption of local action is the differentiation
of roles of the conservation and constitutive equations. By requiring that constitutive equations
satisfy the principle of local action, the conservation law of momentum has the distinct role of
describing the kinematic evolution of the neighboring material elements by forces that act between
them. The constitutive equation has the role of relating stress at a material point to the history
of states of the material point. A local constitutive equation requires no additional information
beyond its own history of states, time derivatives of states, or spatial gradients of states. If the
stress in a constitutive equation did depend on the state at a material point at a distance, then the
role of a constitutive equation has changed, and it now shares an equal role with the conservation
laws by coupling the evolution of the states of non-adjacent material points.

Another advantage of the separation of the roles of the conservation and constitutive equations
is that material properties of the continuum material can be defined from constants in the
constitutive equation. If the constitutive equation did depend on states of non-adjacent material
points, the parameters in the constitutive equation would not be associated with a single material
element. Consider two adjacent but different materials; a nonlocal constitutive equation would
result in the stress at a point in one of the materials being dependent on the stress or deformation
in the other dissimilar material, and therefore the identification of the constants in the constitutive
equation could not be associated with just one material. In a similar manner, the evaluation of
the constants now depend on the details of deformation throughout the domain and cannot be
associated with the a single material history. In Section 5 we shall present specific examples of
these points. We can now see how separation of roles of the constitutive and constitutive equations
has greatly simplified the treatment of the continuum and consequently been the foundation of
traditional continuum mechanics.

3. THE MOTIVATION AND FORM OF NONLOCAL APPROACHES

There is a need to define what is meant by a nonlocal approach. We must state on the outset
that the term nonlocal has been loosely used in the literature, and no clear guidance or consensus



of what constitutes a nonlocal approach has evolved. In the areas of solid and non-turbulent fluid
mechanics, there is sufficient discrepancy as to what constitutes a nonlocal approach as to prohibit
a workable definition. Often it would appear that proposed terms in constitutive equations are
called nonlocal on the basis of containing spatial gradients which do not normally occur in classical
constitutive equations. Consequently theories that are considered nonlocal by this definition could
be local theories to researchers in other fields. Until a consensus of the nonlocal approaches is
achieved, we submit the following discussion, supplemented by examples of local and nonlocal
terms in constitutive equations in the following sections.

A more universal definition of a nonlocal approach is a method that results in a constitutive
equation that violates the principle of local action given above. Probably the best example of a
nonlocal approach using this definition is the integral constitutive equations in two-point spectral
models for turbulence which contain integrals over non-adjacent material points (Clark, 1991). This
theory is clearly nonlocal, because the extent to which the non-adjacent points are sampled may
be of the size of the domain.

In the fields of solid and non-turbulent fluid mechanics, the determination of whether or not
a theory is nonlocal using the above definition may well determined by the interpretation of non-
adjacent material points for a given physical system. For example, a newly proposed constitutive
equation that includes spatial gradients of kinematic variables that are not traditionally included
may be called nonlocal by researchers, because the effects of the deformational history of adjacent
material points now affect the stress. In other fields similar spatial gradient terms may have been
traditionally used and are considered to be local terms. This may be the current situation between
the fields of solids and viscoelastic fluid mechanics. In the next section we will give examples
of terms that are considered local in the area of viscoelastic fluids and examine a constitutive
equation that is indisputably nonlocal. For completeness we give two examples of a nonlocal term
in constitutive equations: in solid mechanics the gradient of the plastic strain in a yield function
associated with localization phenomenon (Schreyer, 1990a) and (2) in fluids, the Laplacian of the
stress, a stress diffusion term, as presented in the next section.

Why have nonlocal approaches been considered, given their radical departure from the past
understanding of continua? In almost all circumstances numerical difficulties or deficiencies in the
solution of practical problems have been the motivation. These fall into two categories: (1) the
inability to obtain numerically converged solutions in certain parameter ranges, as discussed in the
next section or (2) the unphysical results of numerical solutions, as was observed by de Borst (1987)
for strain localization or as observed in one-point models in turbulence (Clark, 1991). In addition
to numerical motivations, there are theoretical arguments for nonlocal effects, either to include
additional physics (Brave et al., 1991; Ottinger, 1992) or to enable existence proofs of solutions
(El-Kareh and Leal, 1989).

These modifications of classical constitutive equations are the more easily identified nonlocal
approaches. A more obscure occurrence of nonlocal terms is a consequence of certain modifications
to the numerical solution method, typically in order to obtain improved convergence or stability.



Some numerical schemes result in an inconsistent solution to the governing equations, i.e., the
discrete equations being solved do not approach the governing differential equations in the limit of
small time steps and mesh size. Because the equations of motion are inviolate, the additional terms
that result in the inconsistent solution must then appear in the constitutive equation. Often these
added terms are diffusive in nature and might appear as nonlocal terms in the apparent constitutive
equation. These occurrences of nonlocal terms are difficult to recognize simply because of the variety
of numerical modifications that have been employed and the absence of analysis of consistency of
the discrete equations with the governing differential equations.

4. LOCAL AND NONLOCAL MODELS IN VISCOELASTIC FLUIDS

Before we turn to the discussion of nonlocal terms in viscoelastic fluids, we present the
functional form of terms in constitutive equations that have been accepted to result in a local
theory for viscoelastic fluids (Bird et al., 1987a).

1. Any term that includes the kinematic variables, typically the strain or strain-rate tensor. A
common example of this type of term is the velocity gradient or strain-rate tensor that appears
in the constitutive equation for a Newtonian fluid.

2. Any term that includes gradients, of any order, of the kinematic variables. A example of this
is the gradient of the strain-rate in a second order fluid.

3. Certain gradients of the stress. A commonly occurring convective term in viscoelastic
constitutive equations is u ·∇S in which u is the velocity and S is the polymer contribution to
the stress tensor. An example of a constitutive equation with this term is the Maxwell model.

4. Certain inner products of the strain-rate and stress tensor. An example of a constitutive
equation with this term is the Jeffreys model.

5. Any term that is a time integral, or multiple time integrals, over the past history of a material
point of a kinematic variable or product of kinematic variables. A general integral expression
that illustrates many of these terms is contained in the memory integral expansion. This
constitutive equation describes the most general functionality of a rheologically invariant, and
therefore local, material and includes all of the above examples of constitutive equations for
viscoelastic fluids.

This list illustrates the variety of terms that have been considered in local viscoelastic constitutive
equations. There are possible functional terms that are missing in this list, for example the
Laplacian of the stress, which will be examined later in this section. It would appear that the
terms described in items 2 would be the fluid equivalent of the gradient of the plastic strain that
is considered to be a nonlocal term in solid mechanics (Schreyer, 1990a). Whether or not the
this term actually violates the principle of local action, as required by our suggested definition of
nonlocal, cannot be establish without further analysis. Further evidence that these are possibly
local theories is the absence of the difficulties that may be associated with a truly nonlocal theory,
as presented in the remainder of this paper.



Some observations can be made as to the theoretical support for nonlocal constitutive equations
in viscoelastic fluids. A general kinetic theory of polymer liquids (Curtiss et al., 1976; Curtiss and
Bird, 1983; and Bird et al., 1987b, Part IV) has been developed that starts with a description
of a polymer and solvent as a collection of mass points with arbitrary potentials specifying their
interactions. From first principles the conservation laws of classical hydrodynamics are recovered
and a general expression for the stress tensor, the constitutive equation, is found. The required
assumptions are (1) the construction of a mechanical model for the molecules, (2) the potentials are
pair-wise additive (three-body effects are neglected), (3) the variation of the distribution functions
over molecular scales is neglected and (4) acceleration terms in the equation of motion of the
mass points are neglected. With these few assumptions, the constitutive equations that result
from this general kinetic theory are all found to be rheologically invariant. We can then conclude
that from a very general kinetic theory description of viscoelastic fluids, nonlocal terms in the
constitutive equation do not occur. But in fairness to the emerging field of nonlocal approaches,
the development of the general kinetic theory focused on establishing the existing understanding of
continuum mechanics, and the possibility of nonlocal contributions has not been examined, except
as noted below.

In the rest of this section nonlocal approaches within the field of viscoelastic fluids are
presented. It is beyond the scope of this paper to consider the origin of nonlocal terms in the
kinetic theory other than to note that it can occur because of relaxation of the third assumption
above, as might be expected (Phan-Thien et al., 1990; Brave et al., 1991; Ottinger, 1992).

For more than two decades in the field of viscoelastic fluids, a breakdown or failure of
convergence was observed in the numerical solution of flows. For a summary of the conundrum
at the time see the review by Crochet et al. (1984). The limit was often reached in a region
where the solutions, before breaking down, have elastic effects that are no more than perturbations
about a Newtonian fluid. This was a dismal time for numerical researchers when all the interesting
phenomena in viscoelastic fluids occurred when elasticity dominated the flow.

A dimensionless parameter that describes the relative importance of the elastic contribution
is the Weissenberg number, W , the ratio of an elastic time constant to a time constant associated
with the flow. (Some researchers use the Deborah number in place of the Weissenberg number;
the difference is a minor distinction here). It was found that for Weissenberg numbers in the
neighborhood of unity, the numerical methods would break down. This barrier was observed
independent of the numerical approach used (finite elements, finite difference, collocation methods),
the flow being examined (shearing, elongational, complex flows), and the type of constitutive
equation used (differential or integral forms). As the critical value of W was approached, spurious
spatial oscillations in the field variables were observed. Stress components were more affected
than velocity components, resulting in large and erroneous stress gradients. Typically the spurious
oscillations had no physical origin, and their wavelength was dependent on the mesh discretization.
Many reasons were attributed to the existence of the limit (Crochet et al., 1984), including
improper constitutive models, improper evaluation of the stress particularly along boundaries,



insufficient mesh refinement, improper boundary conditions, and bifurcation of the physical solution
as supported by experimental results. Because counterexamples existed for each of these possible
explanations, there was no consistent understanding of the limit accepted by the community.
The situation was not unlike the considerable theoretical, numerical and experimental controversy
surrounding the phenomena of strain softening and localization in solid mechanics in the 1980’s
(Schreyer, 1990b), which ultimately led to the consideration of nonlocal plasticity.

In 1987 Marchal and Crochet (Marchal and Crochet, 1987; Debbaut et al., 1988) were one
of the first to successfully break the Weissenberg number barrier by using a numerical method
that resulted in the diffusion of the stress. Because numerical solutions using this method were
not consistent with the governing equations, these methods were suspect. Later studies removed
the lack of consistency without loss of the range of solution (Basombŕıo et al., 1991). It is now
accepted that the limit on the Weissenberg number was caused by singularities in the discrete
equations (Keunings, 1987; Crochet, 1989). Solutions with high Weissenberg numbers remain a
challenge in the field. What is of interest here is the history of the nonlocal terms that were
proposed in constitutive equations during this time.

In an attempt to validate the use of a stress diffusion and thereby achieve a consistent numerical
method, a kinetic theory argument was proposed that resulted in a stress diffusion term in a
constitutive equation (El-Kareh and Leal, 1989). By the addition of a stress diffusion term, the
resulting set of governing equations were parabolic, instead of hyperbolic, and the first proof
of convergence for a viscoelastic fluid for all values of the Weissenberg numbers was presented.
Although the numerical necessity for a stress diffusion term has diminished because of improved
numerical algorithms, the question of the appropriateness of the nonlocal terms is still relevant.
There have been two recent studies that have argued for stress diffusion-like terms in modeling
polymer diffusion and migration (Bhave et al., 1991 and Ottinger, 1992). In the rest of this section
we consider a nonlocal constitutive equation taken from Phan-Thien et al. (1990), a simplified form
of the constitutive equation proposed by El-Kareh and Leal (1989).

The standard approach for incompressible viscoelastic fluids is to separate the total stress σ into
an isotropic pressure contribution, a Newtonian solvent contribution and a polymer contribution,
S:

σ = −P1 + 2ηsD + S , (1)

where 1 is the unit tensor, ηs is the solvent viscosity, L is the gradient of the velocity, D = (L+L†)/2
is the strain-rate tensor, and 2ηsD is the Newtonian contribution.

The constitutive equation for the polymer contribution to the total stress tensor as derived
from kinetic theory arguments (Phan-Thien et al., 1990) is:

S + λ

{
∂S
∂t

+ u · ∇S − L · S − S · L†
}

= 2ηpD + D∇2S . (2)

in which λ is the relaxation time that is associated with a multisegmented polymer chain, ηp is the
polymer-contributed viscosity, and D is the stress diffusivity coefficient. El-Kareh and Leal (1989)



showed that the stress diffusion term is small, of the order of 10−9 of the convective term. With
λ and D taken to be zero, this equation simply describes the polymer viscous contribution to the
stress tensor. The constitutive equation (2) differs from that proposed by El-Kareh and Leal only
in one aspect: the spring force law used to derive (2) is linear, whereas a non-linear spring force
law is required for El-Kareh and Leal’s existence proof for all Weissenberg numbers. Without the
stress diffusion term, the constitutive equation (2) is the Maxwell model, and the combination of
(1) and (2) is the Oldroyd fluid B (Bird et al., 1987a).

Regardless of how small the diffusion term is, the mathematical structure of (2) is funda-
mentally changed from a hyperbolic to parabolic equation. Furthermore, (2) requires boundary
conditions for S, or gradients of S, or a combination of both, to be prescribed throughout the
boundary of the domain, as illustrated below. Specific difficulties that arise by the addition of
the stress diffusion term are covered in the next section but can be motivated here by a simple
argument.

If we simplify (2) for λ = 0, that is, for no elasticity, the dependence of the stress on its
boundary values and gradients can be made explicit by recasting (2) using the Green function
representation:

Skl(y) =
∫

∂Ω

S∗
ijkl(x,y)

∂Sij

∂xm
(x)nmdA(x) −

∫
∂Ω

∂S∗
ijkl

∂xm
(x,y)nmSij(x)dA(x)

+
2ηp

D

∫
Ω

Dij(x)S∗
ijkl(x,y)dV (x) , (3)

where Ω is the flow domain, ∂Ω is its boundary, n is the outward unit vector on ∂Ω, and S∗
ijkl(x,y)

is the Green function that satisfies

D∇2S∗
ijkl − S∗

ijkl = −δijklδ(x − y) (4)

in which δijkl is equal to unity if all subscripts are equal, and zero otherwise.
We see from the two integral terms in (3) that the stress at any point specifically depends

on the stress gradients and stress on the bounding domain. In the absence of the diffusion term
(D ≡ 0), the stress at a material point depends only on the current strain-rate at that material
point. The dependence of the stress on the stress boundary conditions is not a surprising result
for a parabolic diffusion equation but is a surprising result for a constitutive equation. Normally
the dependence of the stress on boundary values, or for that matter on the state at neighboring
points, is achieved by application of the conservation of momentum equation. With the inclusion
of a stress diffusion term in the constitutive equation, the state of stress is now directly coupled
with the state of stress over the entire domain, and the traditional understanding of the distinct
role of the constitutive equation and conservation laws is lost, as presented in Section 2. Because
the stress at a point depends on non-adjacent material points, we conclude that (2) is a nonlocal
model. The consequences of this will be illustrated in detail in the next section. But given that
the stress of a material point now depends on its distant neighbors, and possibly on a different



material or deformational history, the identification of the constants in the constitutive equation
as material parameters cannot be made.

This analysis of the nonlocal nature of (2) suggests that a more precise determination of a
nonlocal theory is the demonstration that a constitutive equation, in the absence of the conservation
equation, depends on information far removed from its application. Possibly the Green’s function
analysis or similar mathematical tools may provide a general method to realize this definition of
nonlocal.

5. A FLOW EXAMPLE FROM VISCOELASTIC FLUIDS

We now consider the behavior of the fluid described by (2) as it undergoes steady-state
shearing deformation between two parallel plates, separated by a distance d. The lower plate
is held stationary and the upper plate is moved with a uniform speed U . We make the standard
assumption that the flow is uni-directional with a velocity field u = {u(y), 0, 0}. We further assume
that only three stress components are non-zero (Sxx, Sxy and Syy); this is clearly an additional
assumption to the uni-directional flow assumption, because non-zero boundary conditions on the
other stress components will still result in uni-directional flow. At the lower plate of the channel
(y = 0), the boundary condition on the velocity is u = 0, and at the upper plate (y = d), u = U .

It is convenient to set

D = ε2d2 , (5)

and normalize all distances with respect to d, all velocities with respect to U , and all stresses and
pressure (Sxx, Sxy, Syy and P ) with respect to ηU/d, where η = ηs + ηp is the total shear viscosity
in the Maxwell case; ε is a dimensionless diffusion length scale.

The governing equations are

∂P

∂x
= (1 − β)

d2u

dy2
+

dSxy

dy
, (6)

∂P

∂y
=

dSyy

dy
, (7)

Sxx − 2W
du

dy
Sxy = ε2

d2Sxx

dy2
, (8)

Sxy − W
du

dy
Syy = β

du

dy
+ ε2

d2Sxy

dy2
, (9)

Syy = ε2
d2Syy

dy2
, (10)

where W = λU/d is the Weissenberg number, and β = ηp/η is the dimensionless polymer-
contributed viscosity. Eqns. (6) and (7) are the x and y terms of the combination of the conservation
of momentum equation at steady state, ∇ · σ = 0 and (1). Eqns. (8)-(10) are the xx, xy, and yy
terms of the tensor equation (2).



The boundary conditions are

at y = 0, u = 0, Sxx = S(0)
xx , Sxy = S(0)

xy , Syy = S(0)
yy , (11)

at y = 1, u = 1, Sxx = S(1)
xx , Sxy = S(1)

xy , Syy = S(1)
yy , (12)

where S
(0)
ij and S

(1)
ij are prescribed stresses at the boundaries, to be specified later. The unusual

specification of the stress on a prescribed velocity boundary cannot be overemphasized. They result
from the addition of the stress diffusion term in (2).

Equation (10) is uncoupled from the rest and has the solution

Syy = a1 exp(y/ε) + b1 exp(−y/ε) , (13)

where a1 and b1 are to be determined from the boundary conditions for Syy.
In the absence of a pressure gradient in the x-direction, u is determined by solving a quasi-linear

differential equation

(1 − β)
d4u

dy4
−

[
1 +

Wi

ε2
Syy

]
d2u

dy2
− du

dy

dSyy

dy
= 0 , (14)

subjected to the boundary conditions u(0) = 0, u(1) = 1. Clearly, the velocity profile may not be
linear, despite the fact that a linear velocity profile is the universal solution for all simple materials
and is experimentally observed at steady state for all fluids. (We note that a nonlinear velocity
profile can occur if the concentration of the polymer is allowed to vary across the gap (Bhave et al.,
1991).)

Without much loss of generality, we assume that the boundary conditions for Syy are
homogeneous (these boundary conditions are also consistent with the Maxwell equation). Then,
Syy ≡ 0, (14) changes from quasi-linear to linear, and the closed-form solution for u and Sxy is
given by

u(y) = y + a2

{
exp

(
y

ε
√

1 − β

)
− 1 −

[
exp

(
1

ε
√

1 − β

)
− 1

]
y

}

+ b2

{
exp

( −y

ε
√

1 − β

)
− 1 −

[
exp

( −1
ε
√

1 − β

)
− 1

]
y

}
, (15)

Sxy(y) = β + a2

{
β − β exp

(
1

ε
√

1 − β

)
−

√
1 − βε exp

(
y

ε
√

1 − β

)}

+ b2

{
β − β exp

( −1
ε
√

1 − β

)
+

√
1 − βε exp

( −y

ε
√

1 − β

)}
, (16)

where a2 and b2 are constants to be determined from the boundary conditions for Sxy. The stress
component Sxx can be solved knowing u and Sxy.

The total shear stress in the fluid is given by σxy = (1−β)du/dy +Sxy. The total shear stress
is constant throughout the channel, as required by the steady-state momentum equation, and is
given by

σxy(y) = 1 + a2

{
1 − exp

(
1

ε
√

1 − β

)}
+ b2

{
1 − exp

( −1
ε
√

1 − β

)}
. (17)



In traditional rheometry that uses this type of shearing flow, the wall velocity is specified and
the shear stress (by a force measurement) is measured and a relation such as (Eq. 17) is used to
evaluate material parameters in the model. But here, we find that the total shear stress can depend
on the boundary conditions for Sxy, which can be given independent of the boundary velocity. Thus,
conventional rheometry cannot be performed with this type of fluid.

Plots of the velocity and the various components of the polymer contribution to the stress
are given in Phan-Thien et al. (1990). Except for one choice of boundary conditions, the polymer
stress shows steep boundary layers at the walls, and the velocity profile is not linear. Because the
stress is not normally specified at a prescribed-velocity boundary, we have no physical guidance as
to what to chose for the boundary conditions. A choice of boundary conditions that results in a
linear velocity profile and constant polymer shear stress is when the polymer stresses are chosen
such that they satisfy the Maxwell constitutive equation, i.e., (2) with the diffusion term omitted.
For this simple shearing flow these are given by

Sxx = 2Wi
du

dy
Sxy , (18)

Sxy = β
du

dy
, (19)

Syy = 0 . (20)

For this choice of boundary conditions, a2 and b2 are exactly zero, and the diffusion term has no
effect on the solution. Aside from the observation that this choice of boundary conditions results in
a linear velocity profile for this flow, there is no physical guidance why this choice should be used
in other flows.

The simple example given in this section shows that constitutive equations with stress diffusion
terms that are applied across the domain may result in: (1) an unphysical description of real fluid,
(2) additional boundary conditions that have uncertain physical meaning, and (3) constants in the
constitutive equation that can no longer be identified as material parameters.

6. CONCLUSIONS

One immediate conclusion from the comparison of local and nonlocal theories from solid and
fluid mechanics is the need for an accepted definition of what constitutes a nonlocal constitutive
equation. A discussion of the issues and of the relative experience of researchers in the various
fields must occur before a consensus will be reached. The present situation is fraught with potential
misunderstandings from semantic differences alone. We have suggested a definition based on the
violation of the principle of local action used in continuum mechanics. Even with this definition
there is ambiguity as to the extent of a local effect. As we have illustrated with a specific example
from viscoelastic fluids, a more precise definition may be the mathematical demonstration that
the constitutive equation, in the absence of the conservation equation, depends on information far
removed from its application.

Once a definition has been accepted by the continuum mechanics community, we can inquire
about the appropriateness of nonlocal theories. In summary, a few general recommendations can



be made. Foremost there is the need to reach a consensus as to implications of the fundamental
changes to continuum mechanics if nonlocal terms are included in constitutive equations. The
example presented from viscoelastic fluids clearly demonstrates that the separation of the roles
of conservation laws and constitutive relations can be lost because of the effect of the nonlocal
constitutive equation in coupling the states of stress of non-adjacent material points. The meaning
of material parameters in a constitutive equation is consequently ambiguous. As a counter example
to this concern, Schreyer (1990a) evaluates the constants in a nonlocal model by comparison with
experiments without difficulty.

One issue that must be considered in the application of nonlocal theories is the need for
additional boundary conditions as required by the higher spatial gradients of strain or stress. In
the example presented from viscoelasticity, the original presentation of the nonlocal terms used a
more abstracted quantity, the configurational tensor instead of the stress tensor (El-Kareh and Leal,
1989), and the boundary conditions were chosen somewhat arbitrarily, with the recognition by the
researchers that other choices were equally possible. It was not until a correspondence was made
between the configurational tensor and the stress tensor that the unreasonableness of the additional
boundary conditions became apparent (Phan-Thien et al., 1990). We conclude that not only does
the issue of boundary conditions need to be considered, the additional boundary conditions must
be cast in physically meaningful way. Again as a counter example, in the analysis by Schreyer
(1990a) additional boundary conditions proved not to be necessary, because the nonlocal term only
applied in part of the domain, in the region of localized strain away from specified boundaries.

Finally there is need in proposing new numerical schemes to consider if these are consistent
with the governing differential equations. If not, then it may be more forthright to include the
useful effects of the scheme into the constitutive equation. Analysis of the appropriateness of the
additional terms can be more easily understood and completed, as illustrated by the viscoelastic
example presented.
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